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Abstract
The phase transformations of a metastable crystalline phase obtained under high
pressure occurring upon heating are considered: amorphization and subsequent
crystallization. A model for the kinetics of these processes taking into account
the capability for competitive formation of crystalline and amorphous phases at
the boundaries of the grains of the initial phase is constructed. Expressions for
the volume fractions as well as for the nucleation rates and growth velocities
of the phases formed are obtained. Differential scanning calorimetry curves
are described. A numerical analysis of the equations of the kinetics and a
comparison with the results from experiment are carried out with reference to
Cd43Sb57 alloy.

1. Introduction

Generally, a substance which is in a metastable state transforms over time and approaches
a stable state (the state having the lowest free energy). If there are one or more metastable
states with free energies lying between those of the initial state and final state, then the phase
transformation occurs by a competitive formation of precipitates of the stable and intermediate
metastable phases. The competitive formation of precipitates of several phases was considered
in references [1–3]. Approximate solutions for the time dependence of the volume fractions
of competing phases and of the size distribution functions of the precipitates were obtained.
Also, the kinetics of transformation of supercooled liquids during cooling with competitive
formation of crystalline and amorphous phases was considered and the dependence of the
volume fractions of the amorphous and crystalline phases in the final state on the cooling rate
was investigated.

Along with the formation of amorphous solids from supercooled liquids, the amorphization
of metastable or non-equilibrium crystalline solid-state phases is also known to occur [4–7].
In [5, 7], amorphization of the high-pressure phases (HP phases) of some alloys, which are
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semiconductors under ordinary conditions, was revealed and investigated experimentally. Here
we consider the amorphization of Cd–Sb alloy. The experimental data concerning this alloy
are given below.

In figure 1, the T –P diagram for the alloys mentioned above is shown. The HP phase,
which is the metal γ -phase, exists at pressures P � 5.0 GPa. The γ -phase can be preserved
for an indefinitely long time at liquid-nitrogen temperature and pressure P = 1 atm. Upon
slow heating to room temperature, it transforms into an amorphous state. With further heating
it crystallizes, reaching the equilibrium state. The solid lines in figure 1 represent the low-
pressure (AnBm) and high-pressure (γ -phase) melting curves, dashed lines are extensions of the
melting curves to the metastable region, the dash–dotted line corresponds to the equilibrium
AnBm � γ + B, the shaded bands show the kinetic regions of the phase transformations
AnBm → γ + B and γ + B → AnBm. The authors of [5, 7] explain the amorphization
phenomenon as follows. When the b1b2 section of the virtual melting curve passes below the
phase transition kinetic band, upon intersecting b1b2 from the region of metastability of the
phase γ the latter becomes unstable with respect to the long-range-order parameter. However,
the conditions for normal phase transformation into the stable crystalline state have not yet
been achieved. In this case the γ -phase, ‘overheated’ above Tm, should melt, and provided
that b1b2 is below the glass transition temperature (Tg) the phase γ should transform to an
amorphous state.

Figure 1. The temperature–pressure phase diagram of a binary A–B system with the stoichiometric
semiconductor compound AnBm taken from reference [7]. It is explained in the text.

In figure 2, the DSC curves, the volume fraction of the amorphous phase and the relative
expansion of the γ -phase sample are shown.

Our goal in this paper is to obtain a description of the relaxation of metastable crystalline
phases with competitive formation of a crystalline (stable) and an amorphous (metastable)
phase. The model of the phase transformation kinetics (see references [2, 3]) includes
expressions derived for the nucleation rates and growth velocities of the phases occurring
and for the calculation of the volume fractions of the competing phases. The amorphization
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Figure 2. Experimental results from reference [7] for amorphization and crystallization of the HP
phase of Cd43Sb57 upon heating. (a) Heat release power as a function of temperature; (b) relative
expansion of the HP phase sample; (c) volume fraction of the amorphous phase versus temperature.
Solid lines denote calorimetric data; dashed lines are the volumetric curves.

from the crystalline phase differs essentially from the solidification of supercooled liquid.
The difference lies in the mechanism of nucleation of the new phases. In supercooled
liquid, homogeneous nucleation takes place, while in the latter case, nucleation occurs on the
boundaries of grains [5, 6]. Phase transformations accompanied by considerable volumetric
effects (12% for Cd43Sb57 alloy) always start from surface or boundary layers. Accordingly,
the derivation of expressions for the nucleation rates and volume fractions of the competing
phases has to take this peculiarity into account.

The paper is organized as follows. Section 2 describes the derivation of the volume fraction
of the phase nucleating on the boundaries of the grains at time-dependent nucleation rates and
growth velocities. In section 3, the problem of the evolution of the volume fractions of two
competing phases is considered. In sections 4 and 5, the relations between the thermodynamic
functions of phases are considered and the expressions for the nucleation rates and growth
velocities as well as equations for the DSC curves are obtained. The application of this
approach to experimental results is discussed in section 6.
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2. Kinetics of amorphization in a single-phase transformation

Let us first consider the amorphization kinetics in the case of single-phase formation. Then,
these results will be extended to the case of competitive nucleation and growth of two phases.

The volume fraction X(t) of a phase nucleating on the grain boundaries was calculated
by Cahn [8] in the Johnson–Mehl–Avrami approach [9, 10]. Assuming a spherical shape for
the nuclei, constant nucleation rate I and growth velocity u, the volume fraction X(t) is

X(t) = 1 − exp(−Xe(t))

where Xe(t) is the ‘extended volume’ fraction. This is the total volume of growing nuclei
without taking into account their overlap. It is given by [8]

Xe(t) = 2But

∫ 1

0

{
1 − exp

[
−π

3
IBu

2t3(1 − 3x2 + 2x3)
]}

dx (1)

where IB is the nucleation rate on the boundary per unit of area; B is the area of grain boundaries
per unit volume. It is connected with the mean size of the grains by

B = p

L
(2)

where p = O(1) is a geometrical factor which can be derived for any granular structure. In
reference [8] a structural model was used for the determination of B from the mean size of
grains L. Assuming that all grains are represented by equal tetracandecahedra (polyhedra
whose faces are rectangles and hexagons) and L is the distance between square faces, a value
p = 3.35 was obtained.

At the early stage of the phase transformation, i.e. aB ≡ (IBu
2)1/3t � 1, the volume

fraction of the new phase (1) becomes

X(t) = 1 − exp

(
−π

3
IV u

3t4

)
(3)

where IV = BIB is the mean volume nucleation rate. At this stage the phase transformation
is similar to a homogeneous bulk nucleation. At the late stage of the transformation, i.e. for
aB �1, the asymptotic form of (1) is

X(t) = 1 − exp(−2But) (4)

which corresponds to a one-dimensional growth law. The reason for the change in the
dependence X(t) at large aB is the exhaustion of the supply of places at which nucleation can
occur on the boundaries, or ‘saturation of boundaries’ [8], when the boundaries are absorbed
by the new phase.

The expression (1) is the basis for the calculation of the kinetics of an isothermal trans-
formation. However, it cannot be used for describing the kinetics of the process of phase
transformation in the case when I and u, with their exponential dependences on temperature,
cannot be considered to be constant. The time dependence of the growth rate, as will be seen
below, results in some peculiarities of the DSC curve which are not present in the case of a
constant value of this quantity. Therefore, it is necessary to derive an expression similar to (1)
for the case of time-dependent nucleation rates and growth velocities. This derivation will be
performed in the mean-field approach of reference [8].

Let us consider a plane parallel to the given boundary at distance y from it. It intersects a
spherical grain nucleated on the boundary at the moment t ′ and has grown to have a radius of

R(t, t ′) =
∫ t

t ′
u(τ) dτ
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at time t . The intersection area at time t is a circle of radius [R2(t, t ′)− y2]1/2 if R(t, t ′) > y,
but is zero for evolution times for which R(t, t ′) � y.

The total area Ye of all of these intersections determines the extended area [10]. The
centres nucleated in the time interval [t ′, t ′ + dt ′] on unit area of the boundary give the
following contribution to Ye:

dYe(t) =
{
πIB(t

′)
[
R2(t, t ′) − y2

]
dt ′ R(t ′, t) > y

0 R(t ′, t) < y.
(5)

Integrating, we obtain

Ye(y, t) = π

∫ tm(t,y)

0
IB(t

′)
[
R2(t, t ′) − y2

]
dt ′ (6)

where tm(t, y) is determined by the relation

R(tm, t) = y. (7)

As the nuclei are distributed randomly on the plane, the connection of the actual area with
the extended one is given by the following relation (see equation (1)) for the volume fraction:

Y (y, t) = 1 − exp(−Ye(y, t)). (8)

The total transformed volume fraction per unit of area of the given boundary is found by
integrating (8) with respect to y:

Ytot (t) = 2
∫ ∞

0
Y (y, t) dy

= 2
∫ ym(t)

0

{
1 − exp

[
−π

∫ tm(t,y)

0
I (t ′)(R2(t ′, t) − y2) dt ′

]}
dy. (9)

We introduce the dimensionless variable x = y/ym(t) and rewrite expressions (9) and (7) as

Ytot (t) = 2ym(t)
∫ 1

0

{
1 − exp

[
−π

∫ tm(t,x)

0
IB(t

′)
[
R2(t ′, t) − y2

m(t)x
2
]

dt ′
]}

dx

R(tm, t) = xR(0, t).

(10)

If the boundaries are distributed chaotically in the volume, the quantity Xe = BYtot is
the extended volume for our problem, so the real volume X of transformed material is
1 − exp(−Xe); that is,

X(t) = 1 − exp[−BYtot (t)]. (11)

If the argument of the exponential function in (9) is small, we have

BYtot (t) = 2πB

∫ ym(t)

0
dy

∫ tm(t,y)

0
IB(t

′)
[
R2(t ′, t) − y2(t)

]
dt ′. (12)

Changing the order of integration in equation (12), it is not difficult to obtain

Ytot (t) = 4π

3

∫ t

0
IB(t

′)R3(t ′, t) dt ′ (13)

so expression (11) becomes

X(t) = 1 − exp

[
−

∫ t

0
IV (t

′)V (t ′, t) dt ′
]

(14)

where V (t ′, t) = (4π/3)R3(t ′, t).
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In the limiting case of a large argument of the exponential function in (9), we have

X(t) = 1 − exp [−2Bym(t)] . (15)

Expressions (14) and (15) generalize (3) and (4) respectively.
The equilibrium shape of a nucleus is not necessary spherical. In the general case, for

example, if there are elastic stresses in the initial phase, it is described by several parameters.
The values of these parameters for the critical nucleus are determined from the condition of
having a minimum of the free energy if the shape is varied. Also, the growth velocity of a
nucleus can be anisotropic. Therefore, we also consider the model with cylindrical form for
the nuclei. Let the growth velocities of a grain along the boundary and perpendicular to it be
equal respectively to uτ (t) and un(t). Then the radius of the grain and its height are

r(t ′, t) =
∫ t

t ′
uτ (t

′′) dt ′′ z(t ′, t) =
∫ t

t ′
un(t

′′) dt ′′.

Calculations similar to those performed above give the following expression for Ytot (t):

Ytot (t) = 2
∫ ym(t)

0

{
1 − exp

[
−π

∫ tm(t,y)

0
IB(t

′)r2(t ′, t) dt ′
]}

dy. (16)

Here, ym ≡ z(0, t) and tm(t, y) is determined by the equation z(tm, t) = y.

3. Evolution of the volume fractions of competing phases nucleating on the boundaries
of grains

Expression (1) can be generalized to the case of simultaneous growth of two phases. For
simplicity, we consider the case of constant nucleation rates Ik and growth velocities uk , with
u2 > u1.

The expressions for the extended areas of k-phases, similar to (5) and (6), have the
following forms:

dY e
k =

{
πIB

k

[
u2
k(t

′ − t)2 − y2
]

dt ′ uk(t − t ′) > y

0 uk(t − t ′) < y
(17)

Y e
k =

∫ t

0
dY e

k = πIB
k

∫ t−y/uk

0

[
u2
k(t − t ′)2 − y2

]
dt ′. (18)

By integration of (18) and with the substitution ξk = y/ukt , we obtain

Y e
k = πIB

k u2
kt

3

[
1 − ξ 3

k

3
− ξ 2

k (1 − ξk)

]
. (19)

The connection between the actual area Yk and the extended one in the mean-field approx-
imation [8–10] is given by the following set of equations [2]:

dYk(t) = [1 − Y (t)] dY e
k (t) k = 1, 2

Y = Y1 + Y2
(20)

whence we find

Y = 1 − exp[−(Y e
1 + Y e

2 )]. (21)

By integrating (20) with respect to y, we find the increase of the volume dVk of the k-phase
during the time dt . Taking into account that Ẏ e

k ≡ dY e
k /dt = πIB

k u2
kt

2(1 − ξ 2
k ), one has

dVk = 2

[∫ ∞

0
Ẏ e
k exp(−Y e

1 − Y e
2 ) dy

]
dt
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or

dV1(t) = 2πIB
1 u2

1t
3 dt

∫ 1

0
(1 − x2) exp

(
−π

3
t3(α − βx2 + γ x3)

)
dx

dV2(t) = 2πIB
2 u2

2t
3 dt

{
u1

∫ 1

0

[
1 −

(
u1

u2

)2

x2

]
exp

(
−π

3
t3(α − βx2 + γ x3)

)
dx

+ u2

∫ 1

u1/u2

(1 − x2) exp

(
−π

3
IB

2 u2
2t

3(1 − 3x2 + 2x3)

)
dx

}
(22)

where

α ≡ I1u
2
1 + I2u

2
2

β ≡ 3(I1 + I2)u
2
1

γ ≡ 2(I1u
2
1 + I2u

3
1/u2).

It was taken into account in the integration with respect to y that the layer of the k-phase
is in the interval [0, yk], where yk = ukt . For V = V1 + V2, we have

V = 2
∫ ∞

0
Y dy = 2

∫ y1

0

[
1 − exp(−(Y e

1 + Y e
2 ))

]
+ 2

∫ y2

y1

[
1 − exp(−Y e

2 )
]

dy

or

V (t) = 2u2t

{
u1

u2

∫ 1

0

[
1 − exp

(
−π

3
t3(α − βx2 + γ x3)

)]
dx

+
∫ 1

u1/u2

[
1 − exp

(
−π

3
I2u

2
2t

3(1 − 3x2 + 2x3)

)]
dx

}
. (23)

The expressions for Vk(t) are obtained by integrating (22) with respect to t .
The extended volume Xe

k of the k-phase per unit volume of a system is BVk . Assuming
that the boundaries are distributed chaotically in space, we have the following equations for
the volume fractions being sought in the mean-field approximation [2]:

dXk = (1 − X) dXe
k X = X1 + X2.

From these we obtain

X(t) = 1 − exp(−BV (t)) (24)

Xk(t) = B

∫ 1

0
V̇k(t

′) exp(−BV (t ′)) dt ′ (25)

where V̇k(t) ≡ dVk(t)/dt and V (t) are given by expressions (22) and (23) respectively.
Let us introduce the characteristic time t∗ of exhaustion of nucleation sites by means of

the conditions

a
(1)3

B + a
(2)3

B ≈ 1 a
(k)
B = (Iku

2
k)

1/3t t∗ = (I1u
2
1 + I2u

2
2)

−1/3

and consider limiting cases of expression (24). At t < t∗ (the arguments of the exponential
functions in (23) are small), we have

X(t) = π

3
(I

(V )
1 u3

1 + I
(V )
2 u3

2)t
4.

For t � t∗,

X(t) = 1 − exp(−2Bu2t). (26)

Thus, at large times, the kinetics of transformation is determined by the growth of the
fast-growing phase. This means that the layer of the first phase appears ‘immured’ inside the
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layer of the second phase and does not make a contribution to the increment of the transformed
volume. This result is obtained on the assumption that the quantities a

(1)
B and a

(2)
B are of the

same order. If a(1)3

B � 1 and a
(2)3

B � 1, then we have the following expression instead of (26):

X(t) = 1 − exp(−2Bu1t). (27)

In this case, the growth of the transformed region is determined by the slow-growing
phase if its nucleation rate significantly exceeds the nucleation rate of the fast-growing phase:
I1u

2
1 � I2u

2
2. The reason for this is the exhaustion of the supply of places at which nucleation

of the first phase can occur.

4. Nucleation rates and growth velocities of the phases formed

Nucleation on the boundaries of grains is a particular case of heterogeneous nucleation, and
the expression for the free energy of k-phase critical nucleus formation is [11]

%GB
∗,k = %GH

∗,k f (κk) (28)

where %GH
∗,k is the free energy of k-phase critical nucleus formation for homogeneous

nucleation; f (κ) ≡ 1
2 (2 − 3κ + κ3); κk ≡ cos θ = σii/2σik; θ is the contact angle; σii is

the energy of the grain boundaries in the initial (i) phase which is the HP phase; σik is the
surface tension of the interface between phases i and k.

The expression for the rate of homogeneous nucleation of the k-phase has the following
form [2, 3]:

IH
k (T ) = 2Nν0

(
σia

2

kT

)1/2

exp[−(%g(T ) + %GH
∗,k(T ))/kT ] (29)

where %g(T ) is the activation free energy of self-diffusion in the initial phase; ν0 is the
frequency of atom oscillations; N is the normalization factor which is approximately equal to
the number of atoms in unit volume; a is the mean interatomic distance.

The expression for the nucleation rate on the boundary, following [11], is obtained from
(29) by replacing %GH

∗,k by %GB
∗,k and the factor N by NB (NB is the number of atoms on

the given surface in unit volume):

IB
k (T ) = 2NBν0

(
(1 − κ)2

f (κ)

σika
2

kT

)1/2

exp[−(%g(T ) + %GB
∗,k(T ))/kT ]. (30)

This expression differs from that of reference [11] by the addition of the pre-exponential
factor

zkn
∗
s,k = {[(1 − κ)2/f (κ)][σika

2/kT ]}1/2

where zk is Zel’dovich factor, n∗
s,k is the number of atoms on the critical nucleus surface. This

factor was calculated using the formula for the free energy and geometric coefficients which
are given in [11].

The free energy of critical nucleus formation is

%GH
∗,k = 16π

3

σ 3
ik

%µ2
ik

(31)

where %µik = µi(T ) − µk(T ) is the difference of chemical potentials of atoms in the phases
i and k.

The growth velocity of a k-phase nucleus is also expressed through the function %µik(T )

[11]:

uk(T ) = aν0 exp

(
−%g(T )

kT

) [
1 − exp

(
−%µik(T )

kT

)]
. (32)



On the kinetics of spontaneous amorphization of a metastable crystalline phase 7231

The expected temperature dependences of the chemical potentials of atoms in different
phases at fixed pressure for the alloy considered are represented schematically in figure 3. For
differences of chemical potentials %µik , it is possible to use an expression in the form of an
expansion in a series in the vicinity of an appropriate temperature T0:

%µik(T ) = %µik(T0) +
∂ %µik

∂T

⌊
T=T0

(T − T0) +
1

2

∂2 %µik

∂T 2

⌊
T=T0

(T − T0)
2

≡ %µ
(0)
ik − %s

(0)
ik (T − T0) − %c

(0)
p,ik

2T0
(T − T0)

2 (33)

where %µ
(0)
ik , %s

(0)
ik and %c

(0)
p,ik are differences of chemical potentials, entropies and heat

capacities of phases i and k at the temperature T0. From this, using the thermodynamic
relations %µ = %h − T %s and %s = −∂ %µ/∂T , we derive expressions for the differences
of entropies and enthalpies of phases i and k:

%sik(T ) = %s
(0)
ik +

%c
(0)
p,ik

T0
(T − T0)

%hik(T ) = %h
(0)
ik +

%c
(0)
p,ik

2T0
(T 2 − T 2

0 )

%h
(0)
ik = %µ

(0)
ik + %s

(0)
ik T0.

(34)

T

µ(T) i

la

c

Tm
(a) Tm

(c)

Figure 3. Schematic temperature dependences of the chemical potentials of an atom in different
phases at a fixed pressure (1 bar). Lines i, a, c and l correspond to the initial (HP), amorphous,
stable crystalline and liquid phases. T (c)

m is the melting temperature of the stable crystalline phase,
T

(a)
m the analogous temperature for the amorphous phase.

A similar expansion can also be obtained for the surface tension of the interface of phases
i and k:

σik(T ) = σ
(0)
ik − χ(T − T0) (35)

where σ
(0)
ik ≡ σik(T0) and χ ≡ −(∂σik/∂T )

∣∣
T=T0

.



7232 N V Alekseechkin et al

In that case, when the phase transformation occurs near an equilibrium point of the phases,
as, for example, in the case of supercooled liquid, it is natural to carry out the expansion of
%µik(T ) in the vicinity of this point. In this case %µ

(0)
ik = 0 and %s

(0)
ik = %h

(0)
ik /T0 (%h

(0)
ik

is the heat of phase transition). In our case (see figure 3) it is not clear whether the curves of
the HP and amorphous phases intersect somewhere in the low-temperature region. Also, the
virtual equilibrium point Teq of the amorphous and stable crystalline phases is far (Teq > T (c)

m )

from the temperature of the onset of the amorphous phase crystallization process (≈0.5T (c)
m ).

Therefore, we use the expansion of %µik(T ) in the form of (33), where T0 is the temperature
of the onset of the corresponding phase transformation. It is sufficient to take the linear
approximation, as the temperature intervals of the transformations are comparatively small.

The relation between the surface tensions of the amorphous and crystalline phases (σia

and σic respectively) plays an important role in competitive nucleation. It was obtained in
references [1, 3] and has the form

σia = σic − T ξ (36)

where ξ is the configurational entropy per atom on the surface of the amorphous phase nucleus
(cluster). This relation can be explained by the following reasoning.

In translationally invariant crystalline structures, configurational entropy is produced by
defects and is small due to the large formation energies of the point and extended defects. In
amorphous solids the residual entropy at T → 0 is due to the contribution of the configurational
entropy. Usually it is not small; ξ ∼ 1. The growing cluster can build its surface layer
in many ways, ∼ exp(ξNs), where Ns is the number of atoms in the surface layer. Thus
the configurational entropy lowers the surface free energy of a cluster and correspondingly
increases the nucleation rate.

5. The equation of the DSC curve

In order to derive the DSC curve equation, we assume a linear dependence of the quantity of
heat released during dt on the increment of the transformed volume:

dQ = %h(T ) dX (37)

where %h(T ) is the heat of transformation (expression (34) for %hik(T ) is an approximation
for this function). Then the equation of the DSC curve for nucleation on the boundaries of
grains is obtained using (11) and (10) (or (16)):

q(t) ≡ dQ

dt
= %h(T )B

dYtot (t)

dt
exp(−BYtot (t)) (38)

dYtot (t)

dt
= 2u(t)

[∫ 1

0
dx {1 − exp(−f (x, t))} + 2ym(t)

∫ 1

0
dx

∂f (x, t)

∂t
{exp(−f (x, t))}

]
(39)

where

f (x, t) = π

∫ tm(t,x)

0
I (t ′)

[
R2(t ′, t) − y2

m(t)x
2
]

dt ′.

On heating at a constant rate λ starting from temperature Ti , i.e. with

T = Ti + λt (40)

these relations give a dependence of q on T .
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In the case of constant values of the quantities I and u, expression (39) has the following
form:
dYtot (t)

dt
= 2u

∫ 1

0

{
1 − exp

(
−π

3
IBu

2t3
[
1 − 3x2 + 2x3

])
dx

}

+ 2πIu3t3
∫ 1

0

[
1 − 3x2 + 2x3

]
exp

(
−π

3
IBu

2t3
[
1 − 3x2 + 2x3

])
dx. (41)

This function increases ∼t3 at small times, then it passes through the maximum cor-
responding to the stage of saturation of the boundaries and tends to a constant value equal to
2u at large times. The main distinction of the function (39) from (41) appears at large times:
it continues to increase as 2u(t). The DSC curve becomes one which has either an additional
peak or a fracture in the ascending branch. Thus, the dependence of the grain growth velocity
on time results in a change of the usual form of the DSC peak.

The DSC curve equation involves a number of phenomenological parameters whose exact
values are not known. Therefore it is desirable to simplify the model, in order to exclude
some of the parameters. Such a simplification is possible for Cd–Sb alloy due to the following
features of the amorphization DSC curve (figure 2). Noting that the two peaks of this curve are
considerably separated, we can conclude that the saturation of boundaries occurs in a narrow
temperature range (about 10 K) and finishes at a volume fraction of about 0.1. Consequently,
the nucleation and growth rates in this short stage may be taken as constant, equal to some mean
values Ī , ūτ and ūn. The second peak is apparently related to the stage of one-dimensional
growth of the boundary layer and can be described by just the function un(t). As a result,
expression (16) can be approximately replaced by the following one:

Ytot (t) = 2ym(t)
∫ 1

0

[
1 − e−αt3(1−x3)

]
dx (42)

where a = (π/3)Ī ū2
τ .

Correspondingly, the DSC curve equation takes the following form:

qam(t) = 2B %h(T ) e−BYtot (t)

{
3αt2ym(t)

∫ 1

0
dx e−αt3(1−x3)

+ un(t)

∫ 1

0
dx

[
1 − e−αt3(1−x3)

]}
. (43)

The first and second terms describe respectively the first and second peaks. The first peak
can be distinct if the growth velocity un(t) increases sufficiently slowly at the first stage of the
process.

The equation of the DSC curve for random nucleation in the volume is obtained using
equation (14):

qcr(t) = 4π %h(T ) u(t)

[∫ t

0
IV (t

′)R2(t ′, t) dt ′
]

exp

(
−

∫ t

0
IV (t

′)V (t ′, t) dt ′
)
. (44)

6. Discussion

The expressions obtained in the previous sections give a complete description of the kinetics
of metastable crystalline phase polymorphic transformation with competitive formation of
amorphous (metastable) and crystalline (stable) phases. Along with the description of the
evolution of the volume fractions of the phases formed, the expressions for the DSC curves
have also been obtained, which allows one to carry out a quantitative analysis of the calorimetric
measurements.
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In references [5, 6], the authors, on the basis of the analysis of experimental data from
measurements of the electrical resistance of the sample at various stages of amorphization,
conclude that nucleation of the amorphous phase occurs on the boundaries of grains of the initial
phase. The measured value of the Avrami index, 1.4 ± 0.4 [5], shows that one-dimensional
growth takes place. As shown above, the form of the experimental amorphization DSC curve
agrees with this conclusion. The rather large volumetric effect of Cd43Sb57 amorphization
hinders the formation of nuclei in the bulk because of the appearance of elastic stresses. Along
with this, the boundaries provide relaxation of the stresses due to diffusion and the emission
and absorption of dislocation loops. The diminishing of stresses due to the relaxation process
together with the decrease in surface energy considered above by means of the function f (κ)

lead to the nucleation rate on boundaries being much larger than that in grain bulk.
The volume changes due to amorphization lead to plastic deformation of the material. As is

seen (figure 2), the amorphization proceeds at comparatively low temperatures (300–330 K).
The bulk diffusion activation energy for this type of alloy is 1.5–2 eV [5]. It considerably
exceeds %g, which controls the growth rate. Taking this into account, as well as the geometry
of the growing phase, we conclude that the main role as regards the stress relaxation is taken by
the boundary and interfacial diffusion. This is Coble diffusional–viscous flow of the material.

In addition to the nuclei of the amorphous phase, nuclei of the stable crystalline phase are
also formed on the boundaries of grains, and, as follows from figure 3 and expression (32), the
growth rate of the latter is greater than that of the former. However, x-ray analysis of the sample
at the first stage of transformation [5] shows that its structure is amorphous, and there are no
inclusions of the crystalline phase. The transition into the basic crystalline state occurs from
this amorphous phase at higher temperatures by random nucleation in a bulk. Using the results
of section 4, we conclude that the rate of nucleation of crystallites is negligible in comparison
with that of clusters for competitive nucleation. The reason for this is that the surface tension
of clusters is less than that of crystallites (see relation (36)). Moreover, the dominance of the
nucleation rate of clusters in this case is expressed more by the strength than in the case of
the homogeneous nucleation mechanism, since the height of the barrier %GB

∗,a for nucleation
of clusters is lowered further by the f (κ) function, which decreases with decreasing surface
tension.

Despite the values of the parameters controlling nucleation and growth of the phases
forming being unknown, they can easily be chosen to fit the experimental data. Reasonable
values of the parameters for amorphization are as follows: temperature of melting of the stable
crystalline phase of the Cd43Sb57 alloy T (c)

m = 723 K; a = 2.83 × 10−8 cm; mean grain size
L = 3 × 10−5 cm; α = 10−8 s−3. The linear approximation with factors %µ

(0)
ia /kT (c)

m = 0.6,
%s

(0)
ia /k = −0.9, T0 = 275 K was used for the difference of chemical potentials. The function

un(t) was taken in the form (32) with

%g(T ) = %g0(1 − ε(T − T0)/T
(c)
m ).

The best fit is provided by the values %g0/kT
(c)
m = 14.8 (about 0.9 eV) and ε = 2.5. The

second term in this expression describes a weak temperature dependence of the activation
free energy.

We used the following for the crystallization: %g/kT (c)
m = 10.2; σaca

2/kT (c)
m = 0.65;

%µ(0)
ac /kT

(c)
m = 0.4; %s(0)ac /k = 0.8; T0 = 340 K. Note that simultaneous changes of the

values of several quantities can affect the result weakly.
The computational DSC curves and temperature dependences of the volume fractions

for the processes of amorphization and crystallization presented in figure 4 are in agreement
with those obtained experimentally. Equation (43) of the model with plate-like [11] shape
of the nuclei was used for the amorphization DSC curve. Thus the transformation seems to
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Figure 4. (a) Calculated DSC curves for the following processes for the Cd43Sb57 alloy: HP phase
amorphization (1) and amorphous phase crystallization (2). (b) Volume fractions of the amorphous
(1) and crystalline (2) phases versus temperature.

proceed as follows. The amorphous phase precipitates grow mainly along the boundaries,
gradually covering grains with a thin layer. Then an increase in thickness of this layer occurs.
Equation (43) for appropriately chosen quantities describes such a process adequately.

Acknowledgments

We thank E G Ponyatovsky for useful discussions and A A Turkin for valuable technical
assistance. This work was carried out with financial support from the Ukrainian Centre of
Science and Technology, Project N442.



7236 N V Alekseechkin et al

References

[1] Bakai A S 1994 Fiz. Nizk. Temp. 20 469 (Engl. Transl. 1994 Ukr. J. Low Temp. Phys. 20 373)
Bakai A S 1994 Fiz. Nizk. Temp. 20 477 (Engl. Transl. 1994 Ukr. J. Low Temp. Phys. 20 379)

[2] Alekseechkin N V, Bakai A S and Lazarev N P 1995 Fiz. Nizk. Temp. 21 565 (Engl. Transl. 1995 Ukr. J. Low
Temp. Phys. 21 440)

[3] Alekseechkin N V, Bakai A S and Abromeit C 1998 Metallofiz. Nov. Technol. 20 15 (Engl. Transl. 1999 Ukr. J.
Met. Phys. Adv. Technol. 18 619)

[4] Blatter A and Allmen M 1986 Proc. 6th Int. Conf. on Liquid and Amorphous Metals (Garmisch-Partenkirchen,
Germany) vol 2, p 245

[5] Ponyatovsky E G, Belash I T and Barkalov O I 1989 Proc. 7th Int. Conf. on Liquid and Amorphous Metals
(Kyoto, Japan) p 679

[6] Barkalov O I, Belash I T, Gantmacher V F, Ponyatovsky E G and Teplinsky V M 1988 Pis. Zh. Eksp. Teor. Fiz.
48 561

[7] Ponyatovsky E G and Barkalov O I 1992 Mater. Sci. Rep. 8 147
[8] Cahn J W 1956 Acta Metall. 4 449
[9] Johnson W A and Mehl R F 1939 Trans. AIME 135 416

[10] Avrami M 1939 J. Chem. Phys. 7 1103
Avrami M 1939 J. Chem. Phys. 8 212
Avrami M 1941 J. Chem. Phys. 9 177

[11] Christian J W 1965 The Theory of Transformations in Metals and Alloys (Oxford: Pergamon)


